このエントリーをはてなブックマークに追加
ID 31960
JaLCDOI
FullText URL
Author
Huang, Jian
Wu, Lijun
Tashiro, Shin-ichi
Onodera, Satoshi
Ikejima, Takashi
Abstract

Oridonin, an active component isolated from Rabdosia rubescences, has been reported to have antitumor effects. In this study, we compared the signal transduction pathways between TNFalpha-and oridonin-induced L929 cell death. Oridonin and TNFalpha initiated apoptotic morphologic changes, but DNA fragmentation was found in TNFalpha-treated L929 cells but not in oridonin-treated ones. The pan-caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor (z-IETD-fmk) and caspase-3 inhibitor (z-DEVD-fmk) augmented oridonin-and TNFalpha-induced cell death. However, the caspase-9 inhibitor (z-LEHD-fmk) only increased oridonin-induced L929 cell death. Moreover, poly (ADPribose) polymerase (PARP) was cleaved in oridonin-treated L929 cells but not in the TNFalpha-treated groups, and the caspase-3 inhibitor (z-DEVD-fmk) failed to inhibit PARP cleavage. These results showed that only oridonin-induced L929 cell death required PARP degradation in a caspase-3 independent manner. In addition, oridonin increased the ratio of Bax/Bcl-2 protein expression, but TNFalpha did not. TNFalpha induced p38 and ERK activation, whereas oridonin triggered only ERK activation. We also investigated the effect of oridonin on intracellular TNFalpha expression, and found that oridonin augmented endogenous pro-TNFalpha expression and its upstream protein IkB phosphorylation. These results indicated that although oridonin promoted endogenous pro-TNFalpha expression, a great difference existed between the signal pathways through which TNFalpha-and oridonin-induced cell death.

Keywords
oridonin
caspase
Bax/Bcl-2
MAPK
I?B
Amo Type
Original Article
Published Date
2005-12
Publication Title
Acta Medica Okayama
Volume
volume59
Issue
issue6
Publisher
Okayama University Medical School
Start Page
261
End Page
270
ISSN
0386-300X
NCID
AA00508441
Content Type
Journal Article
language
英語
File Version
publisher
Refereed
True
PubMed ID
Web of Sience KeyUT