このエントリーをはてなブックマークに追加
ID 32905
JaLCDOI
FullText URL
Author
Wu, Hai-Yan
Tomizawa, Kazuhito
Abstract
Intracellular calcium is a powerful secondary messenger that affects a number of calcium sensors, including calpain, a Ca2+-dependent cysteine protease, and calcineurin, a Ca2+/calmodulin-dependent protein phosphatase. Maintenance of low basal levels of intracellular calcium allows for the tightly regulated physiological activation of these proteins, which is crucial to a wide variety of cellular processes, such as fertilization, proliferation, development, learning, and memory. Deregulation of calpain and calcineurin has been implicated in the pathogenesis of several disorders, including hypertension, heart disease, diabetes, cerebral ischemia, and Alzheimer's disease. Recent studies have demonstrated an interplay between calpain and calcineurin, in which calpain can directly regulate calcineurin activity through proteolysis in glutamate-stimulated neurons in culture and in vivo. The calpain-mediated proteolytic cleavage of calcineurin increases phosphatase activity, which promotes caspase-mediated neuronal cell death. Thus, the activation of the calpain-calcineurin pathway could contribute to calcium-dependent disorders, especially those associated with Alzheimer's disease and myocardial hypertrophy. Here, we focus briefly on recent advances in revealing the structural and functional properties of these 2 calcium-activated proteins, as well as on the interplay between the 2, in an effort to understand how calpain-calcineurin signaling may relate to the pathogenesis of calcium- dependent disorders.
Keywords
calpain
calcineurin
calcium
proteolysis
neurodegeneration
Amo Type
Review
Published Date
2007-06
Publication Title
Acta Medica Okayama
Volume
volume61
Issue
issue3
Publisher
Okayama University Medical School
Start Page
123
End Page
137
ISSN
0386-300X
NCID
AA00508441
Content Type
Journal Article
language
英語
File Version
publisher
Refereed
True
PubMed ID
Web of Science KeyUT