このエントリーをはてなブックマークに追加
ID 19681
Eprint ID
19681
FullText URL
Author
Ise Masayuki
Niimi Ayahiko
Konishi Osamu
Abstract
There is increased interest in accurate model acquisition from large scale data streams. In this paper, because we have focused attention on time-oriented variation, we propose a method contracting time-series data for data stream. Additionally, our proposal method employs the combination of plural simple contraction method and original features. In this experiment, we treat a real data stream in credit card transactions because it is large scale and difficult to classify. This experiment yields that this proposal method improves classification performance according to training data. However, this proposal method needs more generality. Hence, we'll improve generality with employing the suitable combination of a contraction method and a feature for the feature in our proposal method.
Published Date
2009-11-10
Publication Title
Proceedings : Fifth International Workshop on Computational Intelligence & Applications
Volume
volume2009
Issue
issue1
Publisher
IEEE SMC Hiroshima Chapter
Start Page
202
End Page
207
ISSN
1883-3977
NCID
BB00577064
Content Type
Conference Paper
language
英語
Copyright Holders
IEEE SMC Hiroshima Chapter
Event Title
5th International Workshop on Computational Intelligence & Applications IEEE SMC Hiroshima Chapter : IWCIA 2009
Event Location
東広島市
Event Location Alternative
Higashi-Hiroshima City
File Version
publisher
Refereed
True
Eprints Journal Name
IWCIA