start-ver=1.4
cd-journal=joma
no-vol=171
cd-vols=
no-issue=
article-no=
start-page=515
end-page=522
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Homodinuclear lanthanoid(III) dithiocarbamato complexes bridged by 2,2′-bipyrimidine: Syntheses, structures and spectroscopic properties
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Four new homodinuclear lanthanoid(III) dithiocarbamato (RR'dtc(-)) complexes bridged by 2,2'-bipyrimidine (bpm) of the form [{Ln(RR'dtc)(3)}(2)(mu-bpm)] {Ln = Nd or Eu; RR' = dimethyl- (Me-2) or pyrrolidine(pyr)} were prepared and their crystal structures and spectroscopic properties were characterized. The crystallographic studies revealed that all of the complexes possess a similar structural motif with an 8:8-coordination geometry, in which the bpm ligand bridges two Ln(III) centers in the kappa N-2(1,1') : kappa N-2(3,3') mode and three RR'dtc(-) ligands coordinate to each Ln(III) center. The complexes exhibit weak but relatively sharp f-f transition bands in the absorption and magnetic circular dichroism (MCD) spectra recorded in the visible region. The MCD spectral studies demonstrated the magneto-optical behavior of the complexes. The spectral features of the dithiocarbamato complexes were distinctly different from those of their beta-diketonato analogues, suggesting the coordination environment around the Ln(III) center influences the electronic structure and spectroscopic symmetry of the complexes in solution.
en-copyright=
kn-copyright=
en-aut-name=YakubuAbdallah
en-aut-sei=Yakubu
en-aut-mei=Abdallah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiTakayoshi
en-aut-sei=Suzuki
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KitaMasakazu
en-aut-sei=Kita
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Education, Okayama University
kn-affil=
en-keyword=2,2 '-Bipyrimidine
kn-keyword=2,2 '-Bipyrimidine
en-keyword=Dithiocarbamate
kn-keyword=Dithiocarbamate
en-keyword=Homodinuclear
kn-keyword=Homodinuclear
en-keyword=Electronic structure
kn-keyword=Electronic structure
en-keyword=Magnetic circular dichroism
kn-keyword=Magnetic circular dichroism
END
start-ver=1.4
cd-journal=joma
no-vol=252
cd-vols=
no-issue=
article-no=
start-page=107
end-page=125
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lithium- and oxygen-isotope compositions of chondrule constituents in the Allende meteorite
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We report in situ ion-microprobe analyses of Li- and O-isotope compositions for olivine, low-Ca pyroxene, high-Ca pyroxene, and chondrule mesostasis/plagioclase in nine chondrules from the Allende CV3 chondrite. Based on their mineralogy and O-isotope compositions, we infer that the chondrule mesostasis/plagioclase and ferroan olivine rims were extensively modified or formed during metasomatic alteration and metamorphism on the Allende parent asteroid. We excluded these minerals in order to determine the correlations between Li and both O and the chemical compositions of olivines and low-Ca pyroxenes in the chondrules and their igneous rims. Based on the O-isotope composition of the olivines, nine chondrules were divided into three groups. Average Δ17O of olivines (Fo>65) in group 1 and 2 chondrules are −5.3 ± 0.4 and −6.2 ± 0.4‰, respectively. Group 3 chondrules are characterized by the presence of 16O-rich relict grains and the Δ17O of their olivines range from −23.7 to −6.2‰. In group 1 olivines, as Fa content increases, variation of δ7Li becomes smaller and δ7Li approaches the whole-rock value (2.4‰; Seitz et al., 2012), suggesting nearly complete Li-isotope equilibration. In group 2 and 3 olivines, variation of δ7Li is limited even with a significant range of Fa content. We conclude that Li-isotope compositions of olivine in group 1 chondrules were modified not by an asteroidal process but by an igneous-rim formation process, thus chondrule olivines retained Li-isotope compositions acquired in the protosolar nebula. In olivines of the group 3 chondrule PO-8, we observed a correlation between O and Li isotopes: In relict 16O-rich olivine grains with Δ17O of ∼−25 to −20‰, δ7Li ranges from −23 to −3‰; in olivine grains with Δ17O > −20‰, δ7Li is nearly constant (−8 ± 4‰). Based on the Li-isotope composition of low-Ca pyroxenes, which formed from melt during the crystallization of host chondrules and igneous rims, the existence of a gaseous reservoir with a δ7Li ∼ −11‰ is inferred.
en-copyright=
kn-copyright=
en-aut-name=KunihiroTakuya
en-aut-sei=Kunihiro
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaTsutomu
en-aut-sei=Ota
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraEizo
en-aut-sei=Nakamura
en-aut-mei=Eizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=The Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University
kn-affil=
en-keyword=Lithium
kn-keyword=Lithium
en-keyword=Oxygen
kn-keyword=Oxygen
en-keyword=Chondrule
kn-keyword=Chondrule
en-keyword=Chondrite
kn-keyword=Chondrite
en-keyword=Asteroid
kn-keyword=Asteroid
en-keyword=Allende
kn-keyword=Allende
en-keyword=Igneous rim
kn-keyword=Igneous rim
en-keyword=SIMS
kn-keyword=SIMS
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=43
article-no=
start-page=151189
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190920
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fluorescence properties of amido-substituted 2,3-naphthalimides: Excited-state intramolecular proton transfer (ESIPT) fluorescence and responses to Ca2+ ions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= 2,3-Naphthalimide derivatives incorporating trifluoroacetamido (3a) and methansulfonamido (3b) functionalities at the 1-position were prepared and their intramolecular excited state proton transfer (ESIPT) fluorescence and responses to metal ions were investigated. Compound 3a displayed normal fluorescence in the amide form in toluene and MeCN and no response to metal cations in the corresponding amidate ion form. In contrast, compound 3b gave off dual emission assignable to normal and ESIPT fluorescence. Additionally, the amidate form of compound 3b displayed off-on fluorescence response to Ca2+.
en-copyright=
kn-copyright=
en-aut-name=WangLei
en-aut-sei=Wang
en-aut-mei=Lei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiMayu
en-aut-sei=Fujii
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NambaMisa
en-aut-sei=Namba
en-aut-mei=Misa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamajiMinoru
en-aut-sei=Yamaji
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoHideki
en-aut-sei=Okamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Molecular Science, Graduate School of Science and Engineering, Gunma University
kn-affil=
affil-num=5
en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Fluorescence
kn-keyword=Fluorescence
en-keyword=ESIPT
kn-keyword=ESIPT
en-keyword=Naphthalimide
kn-keyword=Naphthalimide
en-keyword=Ca2+ probe
kn-keyword=Ca2+ probe
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=24
article-no=
start-page=1562
end-page=1565
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190613
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficient and practical synthesis of N-acetyl enamides from ketoximes by unique iron catalytic system
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= A new procedure for the iron-catalyzed synthesis of enamides from ketoximes was developed, and its mechanism was proposed. A unique reduction system, with the concerted use of KI and Na2S2O4, was involved. The reaction exhibited a wide substrate scope and gave good yields in a short reaction time. The procedure is operationally simple and also applicable for the large-scale synthesis.
en-copyright=
kn-copyright=
en-aut-name=Kunishige Takahiro
en-aut-sei=Kunishige
en-aut-mei= Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Sawada Daisuke
en-aut-sei=Sawada
en-aut-mei= Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Ketoxime
kn-keyword=Ketoxime
en-keyword=Enamide synthesis
kn-keyword=Enamide synthesis
en-keyword=Iron catalyst
kn-keyword=Iron catalyst
en-keyword=One-electron reduction
kn-keyword=One-electron reduction
END
start-ver=1.4
cd-journal=joma
no-vol=98
cd-vols=
no-issue=
article-no=
start-page=38
end-page=46
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hyperoxia reduces salivary secretion by inducing oxidative stress in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=OBJECTIVE:
The aim of this study was to determine the effects of prolonged hyperoxia on salivary glands and salivary secretion in mice.
DESIGN:
Male C57BL/6 J mice were kept in a 75% oxygen chamber (hyperoxia group) or a 21% oxygen chamber for 5 days. We measured the secretion volume, protein concentration, and amylase activity of saliva after the injection of pilocarpine. In addition, we evaluated the histological changes induced in the submandibular glands using hematoxylin and eosin and Alcian blue staining and assessed apoptotic changes using the TdT-mediated dUTP nick end labeling (TUNEL) assay. We also compared the submandibular gland expression levels of heme oxygenase-1 (HO-1), superoxide dismutase (SOD)-1, and SOD-2 using the real-time polymerase chain reaction.
RESULTS:
In the hyperoxia group, salivary secretion was significantly inhibited at 5 and 10 min after the injection of pilocarpine, and the total salivary secretion volume was significantly decreased. The salivary protein concentration and amylase activity were also significantly higher in the hyperoxia group. In the histological examinations, enlargement of the mucous acini and the accumulation of mucins were observed in the submandibular region in the hyperoxia group, and the number of TUNEL-positive cells was also significantly increased in the hyperoxia group. Moreover, the expression levels of HO-1, SOD-1, and SOD-2 were significantly higher in the hyperoxia group.
CONCLUSION:
Our results suggest that hyperoxia reduces salivary secretion, and oxidative stress reactions might be involved in this.
en-copyright=
kn-copyright=
en-aut-name=TajiriAyako
en-aut-sei=Tajiri
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Hyperoxia
kn-keyword=Hyperoxia
en-keyword=Hyposalivation
kn-keyword=Hyposalivation
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Saliva
kn-keyword=Saliva
END