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In the preceding paper a new method of analyzing nonlinear periodic oscilla­
tions was proposed. In this article a new conception, which is named as the
extended harmonic approximation of nonlinear oscillatory circuits, is presented.
Method of obtaining transient solutions by the conception is given and various
numerical examples are shown. The new conception has merits that a consistent
linearization method is given for both steady state and transient state domains
and transient solutions are obtained simply.

We assume that vnm(t), (},,(t) and vo(t) are slowly
varying functions of time compared with the
periodic oscillation 2rr!OJ. Moreover, when

§ 2. Definition of the extended harmonic
approximation

For the time being, it is assumed that always
at the end of transient state a periodic oscillation
takes place, and the oscillation is represented in
the following form:

§ 1. Introduction

The harmonic approximation of nonlinear os­
cillatory circuits defined in the preceding paperl

)

proposed a simple method to obtain steady solu­
tions. The present paper deals with a new con­
ception, which is named as the extended har­
monic approximation of nonlinear oscillatory
circuits. The method of analysis of transient
state according to the conception is mentioned.
It is shown that the harmonic approximation is
a special case of the extended harmonic approxi­
mation and the analysis of transient state by the
method of harmonic approximation is explained
by various examples. The new conception has
remarkable merits that a consistent linearization
is possible for both steady state and transient
state domains and transient solutions can be ob­
tained simply.

An unification and extension of miscellaneous
linearization methods by the present conception
will be treated in a following paper.

n

V=Vo~+ ::E vn~, Vn~ = vnm~sin(nwt -(}n~),
ngl

(2)

1 ~2'"A O=2- jd(lvt),
7C 0

1 ~2'"A n=- fsin(nwt-on)d(wt),
7C 0

1 ~2'"B n=- fcos(nwt-fJn)d(wt),
7C 0

n

+ ::E Bncos(nwt - On),
ngl

n

flt=A o+ ~Ansin(nwt-On)
ngl

n

f = f(v) = f{ Vo+ ::Evnmsin(nwt- On)}.
n-l

t->oo, it is assumed that the oscillation becomes
periodic, namely

where Vo~, Vnm." (}n~ are independent of time.
The transient state is represented in Eq. (1) as
the amplitude modulation Vnm(t) and phase
modulation (}n(t) of the periodic oscillation.
Then, putting v into the nonlinear term I(v),

we expand I(v) into Fourier type series2). From
the series we take up the same frequency terms
as v and make a summation lit of these terms,
That :s,

where

Here, assuming that time t in vo(t), Vnm(t), Un(t)
is a parameter, we calculate Fourier coefficients.
An, B n are dependent of time because of t in the
amplitude vnm(t) and phase (}n(t). Therefore,
referring to the preceding paper, we define it as
the extended (0, 1, "'n) harmonic app~oximation

of nonlinear element.

(1)

n

v(t)=vo+ ~vn> vo=vo(t),
n~l

Vn= vnm(t)sin(nwt - On(t)).

96
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Next, let us represent Eqs. (1)-(2) in vector
form. First we represent in polar coordinates as
follows:

n

Vet) = V o+~ Vm Vo= VO, Vn= vnmeJ(nwt-on\
n=l

n n
F,,=Ao+~ Ane Jnwt-On)+~ BnjeJ(nwt-on)

n=l n-l

=AoVo + t A nVn +j~ Bn V,,,
VO n-1Vnm n~lVnm

(6)

When the amplitudes X", Yn also are slowly­
varying functions of t, we can approximate as

V n= (Yn - j x,,)eJnwt ,

Vn' .nw(xn+ jYn)e Jnwt ,

Vn' . {2nw(xn+ jjn)

Xn=vnmsinom YIl =vnmcosJ,,,

F,,=aoVo

n

L.nWVnmCOs(nwt-{}n) }.
n=l

Putting !(v, v) into the relation of Fourier co­
efficients, we obtain Ao, An, En. The above
differentiation v means that the amplitude and
phase are slowly varying functions of time.

Next, in rectangular coordinates, we obtain
as follows:

n

+~(an+ jPn)(Yn- jxn)eJnwt ,
n-!

V n= (Yn - j Xn)eJnwt ,

Vn= {jr - #n + nw(xn+ jyn)} eJnwt ,

Vn= {jin --#n +2nw(xn+ jj!n) (5)

- n2w2(Yn - jxn)} eJnwt ,

(3)
n

F,,=aoVo+ ~ (an +Hin) V m
16=1

where

The instantaneous value v is the real or imagi­

nary part of vector V. Accordingly an, 8n be­
come the real or imaginary part of vector a".
{In. We calculate the differential coefficients of
V n because of their necessity in later sections.
That is,

Vn=Vnm eJ(nwt-on>,

Therefore

n

if = ~ nWVnm(t)cos(nwt - (}n(t)).
n=l

Especially, where nonlinear element is of a form
!(v, v), the differentiation of Eq. (1) becomes as

n

f(v, v) = f{vo+ ~VnmSin(nll)t-{}n),
n~l

Eqs. (3), (5) are the extended (0, 1, "', n) har­
monic approximation represented with vector
notation of nonlinear element. Taking the real
or imaginary part of the above vector equations,
we can obtain the relations of instantaneous
value. The physical system having the extended
(0,1, "', n) harmonic approximation instead of
nonlinear element in the original nonlinear sys­
tem is linear conditionally and defined as the
"extended (0,1, "', n) harmonic approximation"
(or extended (0,1, ''', n) harmonically approx­
imated system) of the original system. The case
where n=l, we name it simply the "extended
harmonic approximation." When thephenomenon
approaches to the steady state, then

Vnm=Vnm='" =0, On=On='" =0,

x=xn=". =0, )1n=Yn='" =0.

Therefore the extended (0, 1, .... n) harmonic
approximation coincide with the (0, 1, "', n) har­
monic approximation.
Example 1

We take Duffing's equation:

mv+cv+f(v)=psinwt, f(v)=kv+bv3
•

(4)

Vn= VnmeJ(nwt-On),

V· . J'n v <-J(nwt-On)n· (V nml;. ,

Vn' .(2nwvnm&n - n~lIlVnm

+ j2nwvnm)eJ(nwt-on),

V· - {' .(. )} J(nwt-O)n- Vnm -- J vnmfjn - nWVnm en,

Vn= {Vnm -Vnm5;- j(VnmfJn+ vnmijn + OnVnm)

+ 2nw vn.../Jn - n~W
2
V nm

+ j2nwv"m} eJ(nwt-on\

Assuming that the amplitude and phase vary
slowly with time, we neglect small differential
terms. Thus we obtain the following approxima­
tions:
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We substitute those derivatives into the linear
differential equation with variable coefficients,
which represent the extended (0, 1, ''', n) har-

§ 3. Method of solution of the extended har­
monically approximated system

The solution of the extended harmonically
approximated system is found adequately in the
topological space. First we assume the solution

n

in vector notation as V = V o+ 2: V n and obtain
k-I

mv+cv+ f(v)=P sin (ut.

We assume the solution as v = v",(t) sin (wt­
O(t». The linearizations in vector notation be­
come

V=V",SJ(wH\ F,,=(a+jp)V,

f= f{v",sin(wt-o)},

1 )21<a=- fsin(wt-o)d«(t)t),
V",7r 0

1 )21<t9=- fcos(wt-o)d(wt),
V",7r 0

mV +cV+(a+ jp)V=psJwt.

The last equation represents the extended har­
monic approximation.

We take a subharmonic oscillation represent­
ed by the following equations:

mv+cv+f(v)=pcos3t, f(v)=kv+bv3.

We assume the solution as

V=Vl+VS' vl= vJ",(t) cos (t-Ol(t»,

VS=V3",(t) cos(3t- elt».

The linearizations in vector notation become

V1=VlmSJ(t-0J, Vs=V3mSJCSt-Os) ,

F,,=a1 VI + j t9lVl +asVa+ jfJaV3,

:. { mVl+c V1+(a'l+ j t9l)Vl=0,

mVS+cV3+(a'3+ jfJ3)Vs= pSJ3t.

The last equations represent the extended (1, 3)
harmonic approximation. The forms of a, 13 are
similar to those of the preceding paper. How­
ever, the amplitude and phase of a, 13 in this
case must be replaced with time functions
V1",(t), V;j",(t), fh(t), t}s(t).

Example 4
We take a system containing hysteresis ele­

ment:

.. ,. n ..
V= Vo+ Lj Vn, etc.

n-1

. . n.

V=Vo+~ Vn ,
n-l

the derivatives:

1 )21< .a=- f{v",sm(wt-o)}sin«(t)t-o)d(wt)
V",rr °

= k + -}b{ v",(t)} 2.

Taking the imaginary part of the equation the
instantaneous representation becomes as

mv+Cv+a'v=p sin wt.
Since a depends on time because of the time
function v...(t), those extended harmonic ap­
proximations are linear conditionally and
governed by linear differential equations with
variable coefficients.
Example 2

We take the unsymmetrical nonlinear system:

mv +cv+ f(v)=psinwt, f(v)=kv+bv2
•

We assume the solution as v = Vo +V1 = vo(t) +
v",(t)sin(wt - O(t».
The linearization, in vector notation, of non­
linear term becomes

Vo=vo, V1=v",sJ(wt-OJ, F,,=aOV O+a1Vt>
bv2

a'o=k+bvo+
2

"', a1 =k+2bvo,
Vo

by reference to the preceding paper. Perform­
ing the transformation v- Vo+ Vt> v-t Vo+
Vt> v-t Vo+ V1, f-tF", psinwt-tpsJwt in the
original equation, we obtain the extended (0, 1)
harmonic approximation as follows:

m(Vo+ i'\) +c(Vo+ V1)+a'o VO+C1 V1= psJwt.
According to the principle of harmonic balance,
we obtain the following equations:

{mvo+c Vo+ao Vo=O,
mVc-l-cV1+a'lV1=pSJwt.

The instantanous representations become

{mvo + cvo +aovo = 0,

mVl + CV1 +alV1 = psinwt.
Example 3

where

We assume the solution as

v = vm(t)sin(wt - r;(t».
Namely, it is represented as the imaginary part
of vector V. Performing the transformation
v-tV, v-tV, v-tV, f-tF,,=aV, psinwt-t
psJwt in the original equation, we obtain the

linearization, namely the extended harmonic
approximation, as follows:

mV +cV +aV=psJwt,
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monically approximated system, and at the same
time we refer Eq. (4) or (5) for the differentia­
tions of V n. Then, the real and imaginary part
of both sides of the equation are respectively
equated. Finally, simultaneous nonlinear differ­
ential equations for the amplitude and phase or
for amplitudes Xn, Yn are obtained. The ex­
tended (0, 1, "', n) harmonic approximation of
original system is determined from the last
equations.
Example

mv+cv+f(v)=psincut, f(v)=kv+bv3
•

We assume the solution as V=Vm sin (cut-o).
The linearization becomes as follows:

mV+cV+aV=peJwt
•

We assume a slow time variation of the ampli­
tude and phase and substitute the Eq. (4) (n=l,
in this case) into this equation. Equating re­
spectively the real and imaginary part of both
sides of the equation, we obtain the extended
harmonic approximation as

V =psino-ccuvm =k+~b 2
m 2mcu' a 4 Vm,

iJ =PCOSO +mcu'v", - IXVm
2mcuvm •

Those equations determine time variation of
amplitude and phase. If Eq. (6) is used, the
following equations are obtained:

. 1 ( 2 )X=-- -ccux+ay-mc y ,
2mcu

. 1
y= 2mw (p-ax+mw2x-ccuy),

3a=k+ 4 b(x2+y').

The solutions of these equations give solution
curves of the extended harmonic approximation
in the phase plane. The extended harmonically
approximated solutions are constructed as fol­
lows:

V= Vm(t) sin (cut-B(t»,

v = x(t) sin cut - y(t) cos cut.

§ 4. The first order approximation of linear­
ization parameter a, fi

The extended harmonically approximated sys­
tem is represented by linear differential equa­
tions with variable coefficients. Furthermore,
the equations determining the amplitude and
phase become simultaneous nonlinear differential

equations. Generally, the solutions are difficult
to solve in either case. The difficulty is due to
the fact that IX, i1 depend on time. Therefore,
the first approximation of IX, 8, not containing
time, will be calculated in the phase space. The
representative point Xn(t), Yn(t) in the phase
space moves, with the lapse of time, on the
solution curve and gets ultimately to a stable
singular point. To discuss oscillation near a
stable singular point, IX, 8 can be expanded in
Taylor's series about this point and usually it is
sufficient to retain only the first term. That is,
IX, i1 at the stable singular point may be used in
this case. Then, the system having the above
IX, 13 is nothing but the harmonic approximation
mentioned in the preceding paper. In order that
the transient solution in the harmonic approxi­
mation becomes the approximation of exact
solution, it is required that whole solution
curves of oscillation, with the lapse of time,
retain near the stab~e singular point. The
application limit of transient so~ution by the
harmonic approximaticn will be explained in
detail in the next paragraph.

The linearizations stated in this study are
illustrated as follows:

I nonlinear system I To, 50

1------
linearization mentioned
in the present paper

~

I
extend~d harmonically I linearization ment·
approximated system ioned in the preced-

lim' ,ppr_Xi_m_a_ti_o_n_O_f_a_~_2_~_5_2_in_g_p_ape_l

I
harmonically approximated I
system Tl' 51

Fig. 1 Table of the linearizations.

Where T and S show transient and periodic
solutions respectively, and 0, 1 and 2 show
the exact solutions, the harmonic approxima­
tions and the extended harmonic approximations
respe:tively. Generally,

SI=S2' •So, T 2' . To, T 1=FT2,

but when some conditicns mentioned in the next
parat:raph are satLfied, then T1 ' • T 2•

§ 5. Transient solution of the harmonically
approximated system

Examp:e 1
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· 1 ( 2 )x=-2- -cwx-aooy+mw y ,
ma)

· 1 ( 2) (9)y=2-- -p+aoox-mw x-cwy ,
mw

a_=k+ ~ b(x:'+ y~).

part of both sides of the equation respectively,
we ob'ain the equations determining time varia­
tion of x, y as follows:

· 1 ( 2 )X=-- -cwx-ay+mw y ,
2mw

(8)· 1 ( 2)y=-- -p+ax-mw x-cwy,
2ma)

Eq. (9) gives solution curves of the harmonically
approximated system. The equation of oscilla­
tion for the harmonic a; proximation or Eq. (9)

becomes as

mv+cv+a""v=psinwt. (10)
Eq'. (7) and (8) can be solved by an analogue
computer with multipliers and Eqs. (9), (10) by
aG analogue computer with only linear eleme"ts.
Eqs. (9), (10) give the approximation of Eqs. (8),
(7) respectively. Now to show an numerical ex­
ample, we make the same assumpt:on as men­
tioned in paper I, paragraph 3, example 1. Draw-

a=k+ ~ b(x2+ y2).

Eq (8) gives the trajectory of the extended har­
monically approximated system. When the
phenomenon is restricted near a stable singular
point, the time variations of x, y willl:e given
as

mv+cv+f(v)=psinwt, f(v)=kv+bv s• (7)
We assume the solution as

V=Vm cos(wt-o) =X sin wt- y cos lid,

X=Vm sin 0, y=Vm cos O.

As mentioned above, the first approximation of
the linearization parameters a, {3 is valid only
near a stable s'ngular point or a periodic oscilla­
tion Vm_, 8"". We shall assume now that the
approximate periodic solution of the original
nonlinear system has been cbtained with an
analogue computer as was mentioned in preced­
in5 paper. When the trajectory retain near a
stable singular point, the transient oscillatory
part of the solution cune, namely the forerun­
ner state moving to the steady state, becomes a
sufficient approximation of exact solution. Ac­
cordingly we do n~t necessitate special opera­
tions for the transient solution. If we calculate
the approximate periodic solution by an ana­
logue computer, as mentioned in the preceding
paper, we also obtain simultaneously the ap­
proximate transient solution.

Using Eq. (5), the above system is linearized
as

mV +cV +(a+ jfJ)(y- jx)eJwt = - jpeJwt
,

where

a=k+ ~ bv':", p=O.

We assume that x, yare slowly varying func­
tions of t. Substituting Eq. (6) into the above
equation, and equating the real and imaginary

We take a system with symmetrical nonlinear
element. For instance,

•P,

(a) (b)

Fig. 2 Solution curves. (u=l)
(a) Solution curve of Eq. (8). b) Solution curve of Eq. (9).
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Fig. 3 Solution curves. (u=1.35)
(a) Solution curve of Eq. (8). (b) Solution curve of Eq. (9).
(e) Solution curve of Eq. (9). (d) Solution curve of Eq. (9).

ing solution curves at w=l and w=1.35, we
obtain Fig '. 2-3. Where scale factors are

av=X/x=Y/y=l, at=T/t=vk/ m ad
u =w/at. Figs. 2 (a), 3(a) ae obtained from
Eq (8) and Fi s 2(b) 3(b), 3(c), 3(d) fro:n Eq.
(9).

Trajectorie5 near a stable singular point.
namely Figs 2(a). 2(b) or Figs. 3(a), 3(c), are
considerably similar. Position of stable singular
points in Figs. 3(a),3 (b) is cons'derably similar,
but trajectories are not. Fig. 3(d) shows trajecto­
ry of the harmonically approximated system,
corresponding to an un"table singular point in
Fig. 3(a). Similarity of both trajectories means
that transient solutions of x, y and moreover
transient oscillations of Eqs. (7), (10) are con­
siderably similar respectively. However, the

curve of oscillation is not the t ajectory itself,
but has the RPresentat'on v=xs'nwt+ y cos wt
including sin wt and cos wt. Accordingly, ve­
locity of the r presentative point moving on a
t ajectory is al 0 related. Similarity of both
cu ves of oscillation by Eq. (7) (10) is not com­
pletely explained from simila ity of both tra­
jectories. But, trajectory g:ves us an effective
clue of analysis.

Taking into account the initial condirons cor­
responding to points PI-PU in F gs. 2 and 3, we
solve Eqs. (7), (10) by a computer and discuss
the result,. The method of operation was al­

ready rneCltioned in the preceding paper. We
obta'n the results c:s Figs. 4-14. In these
figures, (a) show exact solution by a computer
with multipliers and (b) show solutions cf Eq.
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initial point is far away from a
stable singular point as ps, the
transient part of oscillation il­
lustrated by Fig. 6 differs
considerably. Both trajectories
which pass through the initial
point Ps apparently differ as Figs.
2(a), 2(b). The point P4 is situat­
ed near a separatrix of trajecto­
ry as EhCJwn in Fig. 3. A repre­
sentative point on a separatrix

moves with th ~ lapse of time
and gets ultimately to an unsta­
ble singular point. The velocity

of the movement of the repre­
sentative point relaxes near an
unstable singular point and be­

comes zero at this point theoreti­
cally. In fact, the representative
point is forced to move by slight
disturbances and gets ultimate­

ly to a stable singular point.
Accordingly, when the initial
point is accidentally in the prox­
imity of the separatrix, the
transient solution of the original
nonlinear system continue very
long accrding to the degree of
approximation to the separatrix.
Eq. 00), namely the linearized
~ystem, has not this separatrix.
Terefore, it does not occur that
[he transient state continue very
long according to inital condi­
tion. From this standpoint it
will be explained the difference
of (a) and (b) in Fig. 7. Both
oscillation curves corresponding
to initial points po, p6, namely
Figs. 8 and 9, are comiderably
similar. When Fig. 10, corre­
sponding to initial point pr, is
observed in detail, we know
that the transient solution (a)
csntinues long, because of its
approximation to separatrix. Fig.

11, corresponding to initial point Ps, shows some
difference because of its large separation from
a stable singular point. Both oscillation curves
corresponding to initial points P9, PlO, Pll, name­
ly Figs. 12-14, show considerable similarity.
But, those trajectories in Figs. 3(a), 3(b) do not

Fig. 5 Comparison between the exact solution (a) and the harmonic
approximation (b). (p2, u= 1)

Fig. 4 Comparison between the exact solution (a) and the harmonic
approximation (b). (pl, u = 1)

00) by a computer with only linear elements.
Both oscillation curves on Fig. 4 show a con­
siderable similarity. When the distance be­
tween an initial point and a stable singular
point separates gradually, oscillation curves do
not change equally gradually. Especially, if the
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Fig. 6 Comparison between the exact solution (a) and the harmonic
approximation (b). (p3, u ~ 1.)

Fig. 7 Comparison between the exact solution
(a) and the harmonic approximation (b). (p4,
u=1.35)

simulate quite well.
The application limit of the

harmonic approximation in
transient state has been roughly
explained by the above state­
ment. In other words, it is ne­
cessary that in the total lapse
of time the trajectory do not
depart largely from a stable
Singular point. This require­
ment is closely rela ted to that
the nonlinearity is not very great.
Furthermore, it is also necessa­
ry that the initial value is not
situated teo near the ~eparatrix.

Example 2
We take a system with un­

symmetricJI nonlinear elem~nt.
For instance,

mv + cv + f( v) = psinlUt,

f(v) =kv +bv2
•

Operations of culculation and
results of these equations were
alre dy mentioned in report 1,
p'ragraph 3, example 2. As an­
o'h::r example, we take a sys­
tem having a constant forcing
term as follows:

mv + cv + f(v) = psinlUt+q,

f(v) = kv+bv3
•

Assuming the solution as
V=VO+Vl, vl=vmsin(wt-ln, we
obtain the (0, 1) harmonic ap­
proximation as follows:

f,,=ao~vO+ll:'l~Vh

-b 2 3 b2 kao~- vO+2 vm+ ,

ll:'l~ = 3bv~+ ~ bVfl~ + k,

ll:'o~VO=q,

or mv+cv+al~v

= psinlUt +al~vO'

The last equation is similar to
the equation (4) in the preceding
paper and accordingly the op-
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eration is also analogous. To
show an numerical example, we
assume as follows:

C!-Jkm=0.17, bl k=0.133,

pI k = O. 8, qIk = 2,

u=w!-Jk/m, at=Yk7m.
Figs. 15-16 show some of the
results. In these figures, (a) are
the exact solution with multi­
pliers and (b) are the harmo:lic
approximation. From Figs 15­
16 we know that the harmonic
approximation is the approxima­
lion of the exact solution even
at transient state.

Example 3
We take the system contain­

ing hysteresis element. For in­
stance, Fig. 8 Comparison between the exact solution (a) and the harmonic

approximation (b). (p5, u-1.35)

and again calculate the case having the same
circuit conditions as Fig. 12 in report 1, para­

graph 3, example 3. As shown in Fig, 19, we
obtain a result that is apparently an almost

periodic oscillation Of course. the result does
not agree with the exact solution. We must be

careful of the fact that, in some cases, neglec-

Fig. 9 Comparison between the exact solution (a) and the harmonic
approximation (b). (p6, u=1.35)

. . T , ~

=iJ5-"vL\.:.Af'vV\/\fV\l-\?v~~rV

2

i=a¢+btj}, a=500, b=109
,

=y2 E sin wt=e,

i=j(¢), R=1.12,

C=40.8 X 10-6
, N=242,

and aq>=104, at =10, at=200
(scale factors). Operations and
results of this system were al­
ready mentioned also in report
1, paragraph 3, example 3. Now
two other results will be supple­
mented in Figs. 17-18.

In those figures, (a) give the
experimental results with a
synchroscope and (b) give the
harmonic approximations and
bJth solutions agree consider­
ably well. Frequently, to avoid
the complexity of hysteresis of
the core, only the effect of satura­
tion is taken into account, and
the nonlinearity is approximated
by the curv.; of third order term of ¢ and i. If
we assume that the nonlinearity is roughly

approximated by the neutral line, as represented
by the following equation, of hysteresis loop

of the core used in the example:
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and ilL into X-Y recorder, we ob­
tain the hysteresis loop as Fig.
20. A gradual growth of the
ioop is well understood. When
the phenomene>n approaches to
the steady state, the loop be­
comes a hysteresis loop of ellip·
soidal shape. The actual cur­
rent is obt ined graphically
using the sta tic hysteresis loop
and the harmonic approximation
¢. The sign(O) in Fig. 21 shows
the results of this graphical cal­
culation and roughly agrees
with the experimental solution
of current ob~ained by a syn­
chroscope.

Discussion

The following conditions are
required in order that the har­
monic approximation in transi·
eat state approximate the exact
solution.
(1) The nonlinearity is not ve y

great.
(2) The initial value is not situ-

ated too near the separatrix.
We take the following equation
which has not so marked non­
linearity:

v+ (V6V = e!(v, V, wt)

(O<e<{l).

The steady harmonic oscillation
of this equation is named the
pseudoharmonic or quasi-har­
monic oscillation. If not very
large initial value is given, the
harmonic approximation can be
applied to the above system and
simply gives the approximate
transi~nt solution. But, in gene­
ral, the harmonic approximation
might not be applied to the
automatic control system having
very large nonlinearity. Gene­
rally, it will be dangerous to

apply the harmonic approximation to the sub.
harmonic oscillation having many separatrices
in phase plan~, except that the solution curves
of phase plane of the extended harmonically
approximated system are prepared at hand.

Fig. 10 Comparison between the exact solution (a)
and the harmonic approximation (b). (p7. u=1.35)

Fig. 11 Comparison between the exact solution (a) and the harmonic
approximation (b). (P8. u=1.35)

tion of hysteresis leads to a very false result.
Once ¢ is obtained, the harmonic approxima­
tion of current ilL = ilL can be simply obtained.
That is, this current is nothing but it in FOg. 10
of the preceding paper. Putting the outputs ¢
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§ 6. Applications to autono­
mous systems

We take a damped oscillation
as the example of autonomous
system in transient st 1teo The
foundations of linearization in
this paper are based on the pe­
riodic solution as mentioned at
the beginning of the paragraph
2. Therefore, some contrivance
is necessary for the applicJtion
to the damped oscillation.
Example 1

v+cv+v+bv3 =O. (11)

Transforming the equation, we
obtain as fo lows:

v+v= -cv- bv3=- f(v, v).
(12)

The generating solution of Eq.
(12) is V=Vmcos(t-B). Then,
we assume that the term f(v,
v) is a small perturbation. If the
generating solution is adopted
instead of the periodic solution,
formally, the linearization 0 f
the present study can be applied
in the same manner to the above
system. Assuming that f(v, v)
is small and vm, B are slowly
varying functions of t, we ob­
tain the following linoarization.
For the extended harmonic
approximation of nonlinear e~e­

ment we obtain as follows:

F,,=(a+ j~)V,

f= f{vmcos(t-O),

- vmsin(t - O)},

1 )21<
a=- fcos(t-O)dt

Vmi[ 0

1 )21<
~=- fsin(t-o) dt=c.

Vm7[ 0

ill)

Fig. 12 Comparison between the exact solution (a) and the harmonic
approximation (b). (pg, u~1.35)

Fig. 13 Comparison between the exact solution (a) and the harmonic
approximation (b). (pIO, u=1.35)

For the extended harmonic ap-
proximation of nonlinear system we obtain as
follows:

(13)

We calculate V, iT, iT by Eq. (6) and substitute

into Eq. (13) and equate respectively the rell
and imaginary part of the equation. Then, we
obtain the following equations representing so­
lution curves of the extended harmonic approx­
imation:
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(15)

(16)

P,,=(a+ jp)V,

V·+2J. V+k2V

= e(a+ jj1) V,

where

From the solution of Eq. (14) the
extended harmonic approxima­
tion is constructed as follows:

v=xsint+ ycost.

Example 2

V+2J.v + k2v = el(v, v),
(O<e<1).

When the system has a large
damping term, and therefore a

large coefficient of ii, consider­
able error is introduced by the
above method. To avoid the
error due to the large damping
term, we take up a generating
solution, which has a form of
damped oscillation, as was adopt­
ed by Mr. E. P. Popov. Narrely,
as the generating solution the
following form is assumed:

V = vme-I>.tsin(wt - 0)

=p sin(wt - f)),

where w= ~/k 2- ).2 is the condi­
tional frequency. We obtain the
linearization in vector notation
as follows:

V = pe}(wt-8\
p

1 )2"a=- Isin(wt-f))d(wt),
pIT u

1 )2"FJ=- ICOS('Vt-f))d('Vt),
p;-;: 0

1= I {psin(wt- f)),

pWCOS(wt - f)) -;.p sin(wt

- f))}.

We obtain the instanta,-eous
forms from the imaginary part
of Eq. (15). Ttat is,

I" =apsin(wt-f))

+ppcos(wt-O),

ii +2 ;.V + k 2v= eap sin(wt-O)

+e{ipcos(wt - f)).
(14)

. _ax-/3y
y- 2 '

. _ -Fix-ay
x---- 2 '

a = ~ b(x2 + l),

ii~\PV~Jf\;(\V¥vruf\v:
k-'TndrcHnti \tT""'" 0" ,., i '(b)/' .. o. 0'.'

~~!IJJI~A/\j\~Avr\l\:
;:L:J;>,::httH'Ft+1:;i-'t;'1~::t;:,;.1; <·~'1 ;",",;,1:;, ";"'" " ' ',;

Fig. 15 Comparison the exact solution (a) and the (0, 1) harmonic
approximation (b). (u=1.18)

f\ f\ f\ f\ f\ f\ f\ /\ /\ /\

Fig. 14 Comparison between the exact solution (al and the harmonic
approximation (b). (pn, u = 1. 35)
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Cbi

Fig. 18 Comparison between the experimental solution (a) and the
harmonic approximation (b). (E~9.37, £~60)

f> I
w:.!T

~ 1\ f\ f\ J\J\ /\ 1\ Il­
, \TV\] V V \}V V

'" I I 1 '1)" !VA t !!!! I '/ "! 1 I [ '. t"'1 I II

1)

t!LnnnAAAAF­; V~V~vV v-v V\r" T, k..····.n·. 11. 11-Jvvvvvve
-J\lV\f\f\N"

.,-fvVWWWV~ ·
----'\All AAAAA" " /" or .' _':' ,

I'. ,IVVV\ -1.':'3 f\!\ IIJI 1\ 11/1 /l /\ II
\)lJ I] Ii VV\{ VVV\r-

Fig. 16 Comparison between the exact solution (a) and the (0, 1)
harmonic approximation (b). (u=0.85)

Fig. 17 Comparison between the experimental solution (a) and the
harmonic approximation (b). (E ~ 17.3, £~ 60)

t,,=av +.l(v+J.V),
(V

.. (2 c!,!) ,V+ ;.- -- v
w

+(k2-ca-~@~)v=0. (17)
w

Eqs. (15), (17) represent the ex
tended harmonic ap roxier ation
respective'y.
We calculate V, V, 11 by the

above equation (see puagraph
2) and substitute tho~e into Eq.
(15) and equate respectively the

resulting real and imaginary
part of the equation Th n, we
krow that trajectory of the ex­
tended harmcnic approximation
in (J-{j plane is given as follows:

p_= _;.+c/j(p),
p 2w,

b= ~(p), (18)
2w

We assume that t e ampl tude
and pha~e are slowly varying
tunctio",s of t, and we neglect
the differential terms Then, we
obtain as follows:

v= -,:vmCAtsin(wt-tJ)

+(Vpcos(wt - fJ).

We combine this equation with
Eq. (16) and obtain the following
relations:

Furthermor,

V= imaginary pa. t of V
= imaginary part of

{p- j(iJ-w)p }c)lwH)

= psin(wt - tJ)

- (iJ - w)p cos(wt - 0)

(
. -At , -- At) . ( t= Vmc -AVn,C Sln (V

- tJ) - (0 - w)pcos(wt - 0).

Where the following app ox'ma­

tions are assumed:
• . -At -At.p=vmc -l.vmc .-).(1,

p= Vmc-At - 2).v mc- At + i. 2vmc- At • • { 2p,

pU' .0, pj2 . .0, 2pB~2wr,
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(2) When the phenomenon
reaches the ~teady state, it
agrees with the harmonic ap­
proximation of ronlinear ele­
ment or the harmonically ap­
proximated system of nonlihear
system.

(3) Accordingly, at every turn,
the present ~tudy is the con­
sistent extension of the preced-
ing paper to the transient state.

For instance, we can take into consideration
not only the fundamental harmonics, but also
Eome other harmonics and a constant term.

(4) The linearization of nonlinear term is first
performed Then, the nonlinear system is trans­
formed into the extended harmonically approx­
imated system, which is expressed by linear
differential equations with va~iable coefficients.

(5) The equations determin:ng the amplitude
and phase are obtained from the linear d:fferen­
tial equations. The transient solutions of the
amplitude and phase are given as solution
curves in topological space.

(6) Near the steady solution in phase space
the lir.earization pararr.eters a, e will be suffi­
cient with the first approximation. The system
in the first approximation is nothing but the
harmonically approximated system.

(7) The transient solution of nonlinear sys­
tems is simply obtained with an analogue com­
puter having only linear elements. This solu­
tion is not solution curves, but directly gives
the oscillation curve.

(8) We do not necessitate special operation for
transient solution. We inevitably obtain the
approximate transient solution with the steady
solution, as the fore: urmer part of the steady
so~ution by computer operatLn mentioned in
tte p~eceding paper.

(9) The fcllowi'lg conditions are required in
crder that the harm')n'c arproximation in transi­
ent state approximates the exact solution.

(a) The nonlinearity is not very great.
(b) The initial value is nell situated in too

near part of the separatrix.
If thelse conditions are satisfied, the harrr.onic
app~oxima ion can be applied to the s :-called
pseudo-harmonic or quasi-l:armonic oscillation
a~d is very effective.

(10) Even if the relation between the flux and
current in transie::t state a:e not known previ­
ously, the trsansient phenomena of ferroreso-

i.;..-\

16

10 •

T
5,,10~wb

Fig. 21 Comparison between the experimental
solution of current and the graphical calcula­
tion.

Fig. 20 Hysteresis loop of the harmonic approxi­
mation.

Fig. 19 Solution"'of the~case approximated by the curve of third order
term of 9 and i. (The soltition obtained by a computer with multi­
pliers.)

§ 7. Conclusions

The e;;sential points of the study may b ~

stated in following items:
(1) The extended harmonic approximation of

nonlinear element, and the extended harmon'­
cally approximate:! system of nonlinear system
are defined.

As mentioned above the generating ;;ob1ion is
a damped oscillation. Accordingly, ev ~n if the
coefficient }. of the damping term were cO:1sid­
erably large, we could obtain the approximate
solution with small error. But, if ;. is too large,
the phenomenon becomes nono;;cil'atory. In this
case, the present method using the oscUatory
generating solution will te inadequate to zpply.
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nant circuit, considering the hysteresis, can be
analyzed from the static hysteresis loop.

(11) Making use of the oscillatory generating
solution, the present linearization can also be
applied to the autonomous system in transient
state.
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