


















pleted cells likely occurred through this pathway (Figs. 2E and
3B).

As reported previously (21), PKC� is essential for RAGE-
triggered signal transduction. PKC� is activated by autophos-
phorylation of Thr-560 at the C-terminal side (38). Homo-
dimerization and homomultimerization of RAGE resulted in
autophosphorylation of PKC� (Thr-560) (Fig. 2B). Homodi-
merization and homomultimerization of RAGE probably led to
mutual phosphorylation of associated PKC�, and the activated
PKC�, in turn, phosphorylated Ser-391 of RAGE. The abundant
DAP10 inhibited the homodimerization and homomultim-
erization and hence phosphorylation of Ser-391 of RAGE (Fig.
2B). Because phosphorylated Ser-391 is essential for the
recruitment of TIRAP/MyD88 (21), the involvement of DAP10
in RAGE-triggered signaling leads to abrogation of caspase 8
activation and alternatively to sustained Akt activation (Fig. 2, C
and E).

We do not think that the S100A8/A9-induced activation of
Akt that is observed in various types of cells is solely mediated
by RAGE-DAP10. Vogl et al. (39) reported that S100A8/A9
binds to TLR4, and we showed that Emmprin also functions as
a receptor for S100A8/A9 (17). Akt is a downstream signal
mediator for TLR4 and Emmprin (29, 40). In NHKs, the expres-
sion level of TLR4 was very low, but Emmprin was expressed at
an appreciable level as assayed by quantitative RT-PCR (data
not shown). In general, the expression profiles of RAGE,
DAP10, TLR4, and Emmprin vary greatly depending on the cell
type (data not shown). The partially overlapping functional
interference among receptors and adaptor proteins, together
with the variable expression profiles of the involved proteins,
includes a complex signal processing unit.

IL-22 produced by skin-infiltrating lymphocytes is thought
to be involved in the initiation and/or maintenance of psoriasis
(41, 42). Application of IL-22 to an in vitro organotypic skin

FIGURE 7. DAP10-related cell survival. A, sensitization of HaCaT and A431 cells to 10 �g/ml S100A8/A9-induced apoptosis by down-regulation of DAP10 (*,
p � 0.05). The cells (HaCaT cells (left) and A431 cells (right)) were treated with siRNAs for 48 h, and apoptotic rates were determined using FITC-labeled annexin
V. B, effects of forced expression of DAP10 on S100A8/A9-mediated apoptotic cell death. NHKs were transiently transfected with a plasmid expressing red
fluorescence protein (RFP; negative control) or DAP10 tagged with C-terminal 3�FLAG-His6. After incubation for 48 h, the cells were treated with S100A8/A9
(10 �g/ml) for 24 h and then fixed with 4% paraformaldehyde. Sample slides were processed with a click-it TUNEL Alexa Fluor Imaging kit (Molecular Probes
Invitrogen) for detecting apoptotic cells (green). The expression of DAP10 was visualized by indirect immunostaining with anti-FLAG antibody (red). Nuclei
were stained with Hoechst 33342 (blue). Scale bar, 20 �m.
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model resulted in deterioration in terminal differentiation of
the epidermis and hyperplastic epidermis with a reduced gran-
ular layer, which is often observed in psoriatic lesions (43, 44).
Overexpression of IL-22 led to psoriasis-like hyperplasia in in
vivo mouse skin (44). Injection of IL-23 into mouse skin also led
to epidermal hyperplasia, which was abrogated in IL-22�/�

mice and in mice treated with an antibody against IL-22 (45,
46). Van Belle et al. (47) showed that IL-22 is functionally
involved in the pathogenesis of psoriasis with pustules induced
by the TLR7/8 agonist imiquimod. As shown in Fig. 9, A and B,
IL-22 induced a remarkable level of DAP10 in NHKs. It is well
known that IL-22 is a potent inducer of S100A8/A9 (48, 49).
Therefore, it is conceivable that an overexpression of S100A8/
A9 and DAP10, induced at least in part by IL-22, plays a pivotal
role in the pathogenesis of psoriasis.

Activated RAGE-DAP10 recruited not only PI3K but also
GRB2 and GRB7 (Fig. 1, E and F). An interaction between GRB7
and DAP10 was newly found in this study. GRB2 and GRB7 are
known to function as adaptor proteins for ErbB2 (50, 51) and
lead to cellular proliferation via the activation of Ras (52, 53). It

is possible that GRB2 and GRB7 are involved in hyperprolifera-
tion of the epidermis in psoriatic lesions.

Accumulating evidence indicates that IL-22 is involved in
cancer progression. IL-22 produced by infiltrating T cells and
cancer cells themselves stimulates cell proliferation and en-
hances survival (54, 55). In addition, S100A8/A9, RAGE,
and DAP10 are often overexpressed in various types of cancer
(30, 56 –59). The present findings regarding the functional
interaction between RAGE and DAP10 may also be relevant to
cancer progression.

Recently, IL-1R antagonists such as IL-1Ra and IL-36Ra have
attracted attention due to their potential roles in the pathogen-
esis of pustular psoriasis (60). Mutation in IL-1Ra and deletion
in IL-36Ra have been observed in patients with pustular psori-
asis (61– 64). A functional defect in the antagonists caused a
failure in the control of inflammatory signals from the IL-1
receptor family. We previously reported that production of
IL-1F9 (IL-36�, an IL-36R agonist) was remarkably enhanced
by S100A8/A9 in NHKs and that IL-1F9 in turn induced
S100A8/A9 (positive feedback) (18). In IL-36Ra-deficient

FIGURE 8. Highly up-regulated expression of DAP10 in the epidermis of psoriatic lesions. A, immunohistochemistry analysis for a RAGE ligand, S100A8/A9
heterodimer (red), in psoriatic lesions. S100A8/A9 was detected in keratinocytes and infiltrating inflammatory cells both in psoriasis vulgaris and pustular
psoriasis. B, detection of RAGE (red), DAP10 (green), and phospho-Akt (red) in skin sections prepared from normal and psoriatic skin. Nuclei were stained with
SYBR Green. Bars in A and B, 100 �m. C, induction of DAP10 by IL-22 applied to NHKs for 24 h.
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patients, overproduction of S100A8/A9 may trigger an uncon-
trolled positive feedback mechanism for inflammation and
hyperproliferation. In addition, we observed that activated
RAGE leads to the induction of IL-1R agonists such as IL-1�
and IL-1� (21).

In conclusion, we found that DAP10 is critically involved in
RAGE-mediated survival signaling upon S100A8/A9 binding
via the sustained activation of Akt. Both the concentrations of
ligands and the expression levels of DAP10 affected the signal-
ing pathways downstream from RAGE, but in a different man-
ner. Such differential signaling has been observed in psoriatic
epidermal cells and cancer cells but not in their normal coun-
terparts, and thus has been implicated in the pathogenesis of
these conditions. We hope that our findings will lead to a better
understanding of the physiological and pathological conditions
of keratinocytes and the development of therapeutic measures
against various skin diseases.
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