Surgical resection of a giant peripheral ossifying fibroma in mouth floor managed with fiberoscopic intubation

Tatsuo Okui | Soichiro Ibaragi | Kisho Ono | Kazuaki Hasegawa | Akira Sasaki

Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Correspondence
Tatsuo Okui, Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama Kita-ku, 700-8525, Japan. Email: pphzIrke@okayama-u.ac.jp

Abstract
Tracheal intubation for general anesthesia can sometimes be difficult in patients with a large mass in the mouth floor. Preoperative evaluation of the patient’s airway is most important when treating large oral disease.

KEYWORDS
peripheral ossifying fibroma,
Contrast-enhanced CT images displayed a homogeneously enhanced margin of the mass (Figure 1E).

A biopsy and histological examination were performed; malignant disorder was denied. He does not have any medical history. We planned a resection of the mass with the patient under general anesthesia. The large mass located at the mouth floor complicated the insertion of a laryngoscope blade. The Mallampati score is used to predict the ease of intubation, and our patient's Mallampati score was IV. We therefore performed nasotracheal intubation using a McGrath™ video laryngoscope and fiberscope. With the patient under general anesthesia, the mass was excised completely along with adjacent mucosa and periosteum (Figure 2A). Floating lower lateral incisor was extracted. The bone surface was covered with collagen sheet and a tie-over. The cut section of a resected specimen showed marked pseudo-epitheliomatous hyperplasia of stratified squamous epithelium with a calcified area in the subepithelial connective tissue (Figure 2B,C). The lesion included fibrous tissue with calcification, and it was surrounded by a cellular mass of proliferating fibroblastic cells (Figure 2D). There was no finding of inflammation or recurrence 1 year after surgery.

3 | DISCUSSION

A POF is a benign osteogenic tumor with membranous ossification. It therefore involves exclusively the maxillofacial bones. It comprises fibrous tissue containing a variable quantity of mineralized material resembling bone. A POF
generally occurs between the second and fourth decade of life, with no gender difference. The most frequent locations are the mandible and maxilla, involving the premolar and molar region.\(^3-5\)

Peripheral ossifying fibromas have also been referred to by various names such as fibrous epulis with calcification, peripheral cemento-ossifying fibroma, peripheral odontogenic fibroma, peripheral fibroma with calcification, and calcifying fibroblastic granuloma.\(^6\) A POF is inherently considered to be reactive lesion. In 1982, Gardner described the term “peripheral ossifying fibroma” for a lesion that is reactive in nature and is different from the extraosseous counterpart of a central ossifying fibroma.\(^1\) A central ossifying fibroma arises from the endosteum or the alveolar periosteum adjacent to the tooth root; this causes the expansion of the marrow cavity. In contrast, a POF occurs from soft tissues covering the tooth-bearing areas of the jaws. Compared to POFs, central ossifying fibromas tend to grow more quickly.\(^7\)

In vast majority of POFs, there is no apparent underlying bone involvement visible on the x-ray image. However, superficial erosion of bone is noted occasionally.\(^5\) In such case, bone removal must be needed.

The causes of POFs include irritation factors such as plaque, calculus, improper restorations, and trapped food. POFs are thus considered non-neoplastic; rather, they are suspected to be a hyperplastic reaction due to inflammation. The mouth floor is a rare location for a POF.\(^8\) In addition, most reports of POFs have described the size of the lesion as <2 cm. Some reports indicated larger atypical presentations of POF: for example, huge atypical POFs were mentioned as giant, large, atypical, or huge POFs. Childers reported a POF case and reviewed another 10 cases of POF, and he proposed the usage of the term “giant POF (GPOF)” for atypical POFs.\(^2\) We identified another 11 reports of GPOF that were published after Childers’ review.\(^2,5,9-16\) (Table 1). The lesions ranged in size from 2.0 to 10.0 cm in greatest dimension. The patient age ranged from 11 to 62 years. All POFs are pedunculated. Although the POFs generally did not cause tooth displacement, in our patient the giant POF did result in tooth dislocation, and the tooth dislocation occurred on the maxilla. When a giant POF is encountered, the surgeon must be careful to avoid misdiagnosis, and the difficulty of tracheal intubation under general anesthesia must be considered. In our patient’s case, the atypical presentation led to the impression of an aggressive or malignant lesion, and we thus conducted a biopsy before the surgery. The Mallampati score is used to predict the ease of endotracheal intubation,\(^17\) and fiberoptic intubation must be considered in cases with the Mallampati score of III or IV. Some reports indicated that a video laryngoscope and fiberoptic-assisted nasal intubation are suitable tools for managing difficult airways in oral disease.\(^18\) In any case, the preoperative evaluation of the patient’s airway is most important when treating large oral disease such as a giant POF.

ACKNOWLEDGMENTS
None. Published with written consent of the patient.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
TO participated in the case study, wrote the original manuscript, and edited and reviewed the final manuscript. KO and
<table>
<thead>
<tr>
<th></th>
<th>Review by Childers et al&lt;sup&gt;2&lt;/sup&gt;</th>
<th>Franco-Barrera et al&lt;sup&gt;5&lt;/sup&gt;</th>
<th>Barot et al&lt;sup&gt;9&lt;/sup&gt;</th>
<th>Ogbureke et al&lt;sup&gt;10&lt;/sup&gt;</th>
<th>John. et al&lt;sup&gt;11&lt;/sup&gt;</th>
<th>Reddy. et al&lt;sup&gt;12&lt;/sup&gt;</th>
<th>Chaudhari. et al&lt;sup&gt;13&lt;/sup&gt;</th>
<th>Ashok et al&lt;sup&gt;14&lt;/sup&gt;</th>
<th>Gulati et al&lt;sup&gt;15&lt;/sup&gt;</th>
<th>Mariano et al&lt;sup&gt;16&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Greatest dimension (cm)</strong></td>
<td>5.6 ± 2.7 (2.5-10.5)</td>
<td>4</td>
<td>2</td>
<td>4.5</td>
<td>10</td>
<td>5</td>
<td>5.9</td>
<td>4</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td><strong>Base</strong></td>
<td>Pedunculated</td>
</tr>
<tr>
<td></td>
<td>Gingival 1</td>
<td>Well demarcated 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tooth displacement</strong></td>
<td>Yes 5</td>
<td>Yes</td>
<td>No (Implant)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Edentulous</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Edentulous</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Patient age (years)</strong></td>
<td>35.8 ± 24.1 (7.6-70)</td>
<td>11</td>
<td>30</td>
<td>44</td>
<td>62</td>
<td>55</td>
<td>55</td>
<td>60</td>
<td>56</td>
<td>38</td>
</tr>
<tr>
<td><strong>Location</strong></td>
<td>Maxillary anterior 1</td>
<td>Maxillary anterior</td>
<td>Mandible anterior</td>
<td>Mandible posterior</td>
<td>Maxillary posterior</td>
<td>Mandible posterior</td>
<td>Mandible posterior</td>
<td>Maxillary posterior</td>
<td>Mandible anterior</td>
<td>Mandible anterior</td>
</tr>
<tr>
<td></td>
<td>Maxillary posterior 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mandible anterior 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mandible posterior 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mandible 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KH: helped write the original manuscript. IS and AS: participated in the case study, and edited and reviewed the final manuscript.

ETHICAL APPROVAL
Informed consent for his case to be published was obtained from the patient. All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

DATA AVAILABILITY STATEMENT
The data used and/or analyzed in this report are available for the corresponding author Dr Tatsuo Okui on responsible request.

ORCID
Tatsuo Okui https://orcid.org/0000-0002-7640-3274
Kisho Ono https://orcid.org/0000-0002-0199-9907

REFERENCES