start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=2 article-no= start-page=145 end-page=149 dt-received= dt-revised= dt-accepted= dt-pub-year=1995 dt-pub=1995 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cloning of PCR-Products Encoding Potassium Channel Proteins from Mesembryanthemum crystallinum kn-title=Mesembryanthemum crystallinum(ice plant)におけるカリウムチャンネルをコードするPCR産物のクローニング en-subtitle= kn-subtitle= en-abstract=耐塩性、耐乾性の極めて高い Mesembryanthemum crystallinum からPCR法を用いてカリウムチャンネル遺伝子断片を得た。2つのクローンが独立に得られたが、互いによく似ていて、シロイヌナズナのカリウムチャンネルとは67から88%の相同性を示した。サザンハイブリダイゼーションの結果から、今回得られた遺伝子はシングルコピーであり、またカリウムチャンネル遺伝子ファミリーが存在する可能性が示唆された。 kn-abstract=Gene fragments of potassium channels were cloned from Mesembryanthemum crystallinum by using RT-PCR (reverse transcription-polymerase chain reaction). The two fragments were isolated independently and showed high similarity with each other. About 80% identity was found between the two fragments and potassium-channel genes of Arabidopsis. Southern hybridization indicated that the potassium channel gene may be a single copy gene or that a small gene family of potassium channels exists. en-copyright= kn-copyright= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name=且原真木 kn-aut-sei=且原 kn-aut-mei=真木 aut-affil-num=1 ORCID= en-aut-name=BohnertHans J. en-aut-sei=Bohnert en-aut-mei=Hans J. kn-aut-name=BohnertHans J. kn-aut-sei=Bohnert kn-aut-mei=Hans J. aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Mesembryanthemum crystallinum kn-keyword=Mesembryanthemum crystallinum en-keyword=Potassium channel kn-keyword=Potassium channel en-keyword=RT-PCR kn-keyword=RT-PCR END start-ver=1.4 cd-journal=joma no-vol=456 cd-vols= no-issue=4 article-no= start-page=687 end-page=691 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Barley plasma membrane intrinsic proteins (PIP aquaporins) as water and CO2 transporters en-subtitle= kn-subtitle= en-abstract= kn-abstract=
We identified barley aquaporins and demonstrated that one, HvPIP2;1, transports water and CO2. Regarding water homeostasis in plants, regulations of aquaporin expression were observed in many plants under several environmental stresses. Under salt stress, a number of plasma membrane-type aquaporins were down-regulated, which can prevent continuous dehydration resulting in cell death. The leaves of transgenic rice plants that expressed the largest amount of HvPIP2;1 showed a 40% increase in internal CO2 conductance compared with leaves of wild-type rice plants. The rate of CO2 assimilation also increased in the transgenic plants. The goal of our plant aquaporin research is to determine the key aquaporin species responsible for water and CO2 transport, and to improve plant water relations, stress tolerance, CO2 uptake or assimilation, and plant productivity via molecular breeding of aquaporins.
en-copyright= kn-copyright= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanbaYuko T. en-aut-sei=Hanba en-aut-mei=Yuko T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Research Institute for Bioresources, Okayama University affil-num=2 en-affil= kn-affil=Center for Bioresource Field Science, Kyoto Institute of Technology en-keyword=barley kn-keyword=barley en-keyword=CO2 kn-keyword=CO2 en-keyword=plant aquaporins kn-keyword=plant aquaporins en-keyword=salt stress kn-keyword=salt stress en-keyword=water transport kn-keyword=water transport END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue= article-no= start-page=21 end-page=25 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200912 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cooling effect on buildings by the roof greening at Research Institute for Bioresources, Okayama University kn-title=岡山大学資源生物科学研究所における屋上緑化による建物冷却効果 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Roof greening is known to be environmentally friendly technology. Recently developed new roof greening systems, such as the thin-layer/Excel soil© system and the wetland type greening system, were tested at the roof top of buildings of Research Institute for Bioresources, Okayama University. After a multi-year test, these new systems have been established during high-temperature and less-rainfall summer seasons in the south Okayama region. Data indicated that roof greening effectively reduced the temperature of the concrete surface (more than 10°C). The room temperature under the green roof was also reduced both in a stock room (up to 6°C) and in an office room (about 2°C). We also provided the estimation indicating that this roof greening is useful for the decrease in CO(2) emission through the reduction of the electric power for air-conditioning in the summer. en-copyright= kn-copyright= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name=且原真木 kn-aut-sei=且原 kn-aut-mei=真木 aut-affil-num=1 ORCID= en-aut-name=TanakamaruShigemi en-aut-sei=Tanakamaru en-aut-mei=Shigemi kn-aut-name=田中丸重美 kn-aut-sei=田中丸 kn-aut-mei=重美 aut-affil-num=2 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name=森泉 kn-aut-sei=森 kn-aut-mei=泉 aut-affil-num=3 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name=谷明生 kn-aut-sei=谷 kn-aut-mei=明生 aut-affil-num=4 ORCID= en-aut-name=UtsugiShigeko en-aut-sei=Utsugi en-aut-mei=Shigeko kn-aut-name=宇都木繁子 kn-aut-sei=宇都木 kn-aut-mei=繁子 aut-affil-num=5 ORCID= en-aut-name=EnomotoTakashi en-aut-sei=Enomoto en-aut-mei=Takashi kn-aut-name=榎本敬 kn-aut-sei=榎本 kn-aut-mei=敬 aut-affil-num=6 ORCID= en-aut-name=MaitaniToshihiko en-aut-sei=Maitani en-aut-mei=Toshihiko kn-aut-name=米谷俊彦 kn-aut-sei=米谷 kn-aut-mei=俊彦 aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=岡山大学資源生物科学研究所 affil-num=2 en-affil= kn-affil=岡山大学資源生物科学研究所 affil-num=3 en-affil= kn-affil=岡山大学資源生物科学研究所 affil-num=4 en-affil= kn-affil=岡山大学資源生物科学研究所 affil-num=5 en-affil= kn-affil=岡山大学資源生物科学研究所 affil-num=6 en-affil= kn-affil=岡山大学資源生物科学研究所 affil-num=7 en-affil= kn-affil=岡山大学資源生物科学研究所 en-keyword=Roof greening kn-keyword=Roof greening en-keyword=wetland type greening kn-keyword=wetland type greening en-keyword=thin-Iayer/ Excel soil© system kn-keyword=thin-Iayer/ Excel soil© system en-keyword=cooling effect kn-keyword=cooling effect END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=2 article-no= start-page=437 end-page=447 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The mechanism of SO2 -induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. en-subtitle= kn-subtitle= en-abstract= kn-abstract= Plants closing stomata in the presence of harmful gases is believed to be a stress avoidance mechanism. SO2 , one of the major airborne pollutants, has long been reported to induce stomatal closure, yet the mechanism remains unknown. Little is known about the stomatal response to airborne pollutants besides O3 . SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) and OPEN STOMATA 1 (OST1) were identified as genes mediating O3 -induced closure. SLAC1 and OST1 are also known to mediate stomatal closure in response to CO2 , together with RESPIRATORY BURST OXIDASE HOMOLOGs (RBOHs). The overlaying roles of these genes in response to O3 and CO2 suggested that plants share their molecular regulators for airborne stimuli. Here, we investigated and compared stomatal closure event induced by a wide concentration range of SO2 in Arabidopsis through molecular genetic approaches. O3 - and CO2 -insensitive stomata mutants did not show significant differences from the wild type in stomatal sensitivity, guard cell viability, and chlorophyll content revealing that SO2 -induced closure is not regulated by the same molecular mechanisms as for O3 and CO2 . Nonapoptotic cell death is shown as the reason for SO2 -induced closure, which proposed the closure as a physicochemical process resulted from SO2 distress, instead of a biological protection mechanism. en-copyright= kn-copyright= en-aut-name=Ooi Lia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name=平山隆志 kn-aut-sei=平山 kn-aut-mei=隆志 aut-affil-num=6 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil= Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=airborne pollutants kn-keyword=airborne pollutants en-keyword=nonapoptotic cell death kn-keyword=nonapoptotic cell death en-keyword=stomatal closure kn-keyword=stomatal closure en-keyword=sulfur dioxide kn-keyword=sulfur dioxide END