このエントリーをはてなブックマークに追加
ID 57006
Sort Key
7
タイトル(別表記)
Better diagnostic performance using computer-assisted diagnostic support systems in internal medicine
著者
栗山 裕 岡山大学医学部医学科
曽田 祐民 岡山大学医学部医学科
矢野 愛華 岡山大学医学部医学科
安田 英己 医療法人安田内科医院
石井 修 医療法人恵真会 鳥越医院
斉尾 武郎 SMBC日興証券 健康管理室
鳥越 恵治郎 医療法人恵真会 鳥越医院
上田 剛士 洛和会丸太町病院 救急総合診療科
志水 太郎 獨協医科大学 総合診療医学
徳田 安春 臨床研修病院群プロジェクト 群星沖縄臨床研修センター
抄録
The recent application of artificial intelligence(AI)to clinical medicine has confirmed the usefulness of AI for diagnostic imaging, histopathological examinations, and dermatologic screening. Clinical decision support systems are another promising area to which AI could contribute toward better clinical decisions. We have developed computer-assisted diagnostic support systems to reduce human diagnostic errors such as delayed diagnoses, misdiagnoses, and overdiagnoses. Our three Diagnosis Reminder(DR)systems include two AI systems that use machine learning in their diagnosis algorithms. Here, we compared the diagnostic accuracy of a DR-supported group with that of an unassisted physicians group, using three difficult patient cases provided by experts in general medicine.  Our analyses revealed that the three AI diagnostic systems could not provide accurate differential diagnoses up to top 10 in all three patient cases because of incomplete data inputs for machine learning. However, the first DR system, which was developed by an experienced diagnostician over the last 35 years, showed very useful performance in reducing human diagnostic errors when it was used by an expert physician. The use of AI diagnostic systems by knowledgeable physicians will lead to better diagnostic performance. We also discuss the current scenario, future challenges, and prospects for AI diagnostic systems herein.
キーワード
AI 診断システム (AI diagnostic systems)
診断思い出し (diagnosis reminder)
機械学習 (machine learning)
診断エラー (human diagnostic errors)
備考
原著 (Original)
出版物タイトル
岡山医学会雑誌
発行日
2019-04-01
131巻
1号
出版者
岡山医学会
出版者(別表記)
Okayama Medical Association
開始ページ
29
終了ページ
34
ISSN
0030-1558
NCID
AN00032489
資料タイプ
学術雑誌論文
関連URL
isVersionOf https://doi.org/10.4044/joma.131.29
OAI-PMH Set
岡山大学
言語
Japanese
著作権者
Copyright (c) 2019 岡山医学会
論文のバージョン
publisher
査読
有り
DOI
NAID
Eprints Journal Name
joma