start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=7 article-no= start-page=984 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Neural Networks for Dental Implant System Classification en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we used panoramic X-ray images to classify and clarify the accuracy of different dental implant brands via deep convolutional neural networks (CNNs) with transfer-learning strategies. For objective labeling, 8859 implant images of 11 implant systems were used from digital panoramic radiographs obtained from patients who underwent dental implant treatment at Kagawa Prefectural Central Hospital, Japan, between 2005 and 2019. Five deep CNN models (specifically, a basic CNN with three convolutional layers, VGG16 and VGG19 transfer-learning models, and finely tuned VGG16 and VGG19) were evaluated for implant classification. Among the five models, the finely tuned VGG16 model exhibited the highest implant classification performance. The finely tuned VGG19 was second best, followed by the normal transfer-learning VGG16. We confirmed that the finely tuned VGG16 and VGG19 CNNs could accurately classify dental implant systems from 11 types of panoramic X-ray images. en-copyright= kn-copyright= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiiKazumasa en-aut-sei=Yoshii en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaraTakeshi en-aut-sei=Hara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamashitaKatsusuke en-aut-sei=Yamashita en-aut-mei=Katsusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoNorio en-aut-sei=Yamamoto en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FurukiYoshihiko en-aut-sei=Furuki en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=3 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=4 en-affil=Polytechnic Center Kagawa kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil= kn-affil= en-keyword=dental implant kn-keyword=dental implant en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=classification kn-keyword=classification en-keyword=deep learning kn-keyword=deep learning en-keyword=convolutional neural networks kn-keyword=convolutional neural networks END