start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue= article-no= start-page=690 end-page=695 dt-received= dt-revised= dt-accepted= dt-pub-year=1996 dt-pub=199610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pattern classification by stochastic neural network with missing data en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper, pattern classification by stochastic neural networks is considered. This model is also called a Gaussian mixture model. When missing data exist in the training data, it is usual to remove incomplete instants. Here we take another approach, where the missing elements are estimated by using the conditional expectation based on the estimated model by using the EM algorithm. It is shown by using Fisher's Iris data that this approach is superior to removing incomplete data

en-copyright= kn-copyright= en-aut-name=TanakaMasahiro en-aut-sei=Tanaka en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KotokawaYasuaki en-aut-sei=Kotokawa en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaninoTetsuzo en-aut-sei=Tanino en-aut-mei=Tetsuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University en-keyword=learning (artificial intelligence) kn-keyword=learning (artificial intelligence) en-keyword=neural nets kn-keyword=neural nets en-keyword=parameter estimation kn-keyword=parameter estimation en-keyword=pattern classification kn-keyword=pattern classification en-keyword=probability kn-keyword=probability END