このエントリーをはてなブックマークに追加
ID 11448
JaLCDOI
Sort Key
2
フルテキストURL
著者
Setiawan Agus 岡山大学
垂水 共之 岡山大学
抄録
Small Area Estimation (SAE) is the process of using statistical models to link survey outcome variables to a set of predictor variables known for small domains, in order to predict domain-level estimates. The need for detailed statistics on small area is constantly increasing. Small area estimation is becoming important in survey sampling due to a growing demand for reliable small area statistics from both public and private sectors. Bayesian hierarchical models provide a convenient framework for disease mapping and geographical correlation studies. Computation may be carried out using the freely-available WinBUGS software. Two approaches prediction to estimate total patient in small area i will be presented. For the purpose of this paper, the small area estimation in this context use data of Indnesia's population based on the 2000 census for the population of Jakarta and data of patient diarrhea from District Health Service of Jakarta. We interest to predict total patient of diarrhea as variable of interest and data population as auxiliary data from unsample for each small area.
キーワード
Auxiliary data
Population density
Sample survey
Small area estimation
WinBUGS
出版物タイトル
岡山大学環境理工学部研究報告
発行日
2004-02-27
9巻
1号
出版者
岡山大学環境理工学部
出版者(別表記)
Faculty of Environmental Science and Technology, Okayama University
開始ページ
9
終了ページ
17
ISSN
1341-9099
NCID
AN10529213
資料タイプ
紀要論文
OAI-PMH Set
岡山大学
言語
English
論文のバージョン
publisher
NAID
Eprints Journal Name
fest