このエントリーをはてなブックマークに追加
ID 49080
フルテキストURL
著者
Yamaguchi, Daisuke Okayama Univ
Kanda, Takefumi Okayama Univ
Suzumori, Koichi Okayama Univ
抄録
In this study, a small ultrasonic motor driven under cryogenic temperature conditions has been fabricated and evaluated. Since transducer performance generally decreases at cryogenic temperatures, we designed and fabricated a bolt-clamped Langevin-type transducer for operation at cryogenic temperature. We simulated the influence of thermal stress on the transducer. The results from simulation were used to design the transducer, and it was then used to fabricate an ultrasonic motor for cryogenic temperature. The maximum diameter and the height of the motor are 30 mm and 38.7 mm. To enable the motor to be driven at cryogenic temperature, we evaluated the relationship between the contact pre-load and the lowest rotatable temperature. The motor's driving performance was evaluated at both room temperature and cryogenic temperatures. In a 4.5 K helium gas ambient, the rotation speed and starting torque were 133 rpm and 0.03 mu N m when the applied voltage was 50 Vp-p.
キーワード
Ultrasonic motor
Cryogenic environment
Piezoelectric transducer
Actuator
発行日
2012-09
出版物タイトル
Sensors and Actuators A: Physical
184巻
開始ページ
134
終了ページ
140
ISSN
0924-4247
資料タイプ
学術雑誌論文
オフィシャル URL
http://dx.doi.org/10.1016/j.sna.2012.06.024
言語
English
著作権者
(C) 2012 Elsevier B.V. All rights reserved.
論文のバージョン
author
査読
有り
DOI
Web of Sience KeyUT