このエントリーをはてなブックマークに追加
ID 30222
フルテキストURL
著者
Nishiyama, Yoshihiro Okayama University Kaken ID publons researchmap
抄録

A three-dimensional Ising model with the plaquette-type (next-nearest-neighbor and four-spin) interactions is investigated numerically. This extended Ising model, the so-called gonihedric model, was introduced by Savvidy and Wegner as a discretized version of the interacting (closed) surfaces without surface tension. The gonihedric model is notorious for its slow relaxation to the thermal equilibrium (glassy behavior), which deteriorates the efficiency of the Monte Carlo sampling. We employ the transfer-matrix (TM) method, implementing Novotny's idea, which enables us to treat an arbitrary number of spins N for one TM slice even in three dimensions. This arbitrariness admits systematic finite-size-scaling analyses. Accepting the extended parameter space by Cirillo , we analyzed the (multi-) criticality of the gonihedric model for Nless than or equal to13. Thereby, we found that, as first noted by Cirillo analytically (cluster-variation method), the data are well described by the multicritical (crossover) scaling theory. That is, the previously reported nonstandard criticality for the gonihedric model is reconciled with a crossover exponent and the ordinary three-dimensional-Ising universality class. We estimate the crossover exponent and the correlation-length critical exponent at the multicritical point as phi=0.6(2) and (nu) over dot =0.45(15), respectively.

キーワード
self-avoiding surfaces
critical-behavior
glassy behavior
spin
systems
lattice
dimensions
備考
Digital Object Identifer:10.1103/PhysRevE.70.026120
Published with permission from the copyright holder. This is the institute's copy, as published in Physical Review E, August 2004, Volume 70, Issue 2, Pages 7.
Publisher URL:http://dx.doi.org/10.1103/PhysRevE.70.026120
Direct access to Thomson Web of Science record
Copyright © 2004 The American Physical Society. All rights reserved.
発行日
2004-8
出版物タイトル
Physical Review E
70巻
2号
資料タイプ
学術雑誌論文
言語
English
査読
有り
DOI
Web of Science KeyUT
Submission Path
electricity_and_magnetism/177