start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=6869 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200422 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deficiency of CD44 prevents thoracic aortic dissection in a murine model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thoracic aortic dissection (TAD) is a life-threatening vascular disease. We showed that CD44, a widely distributed cell surface adhesion molecule, has an important role in inflammation. In this study, we examined the role of CD44 in the development of TAD. TAD was induced by the continuous infusion of beta-aminopropionitrile (BAPN), a lysyl oxidase inhibitor, and angiotensin II (AngII) for 7 days in wild type (WT) mice and CD44 deficient (CD44(-/-)) mice. The incidence of TAD in CD44(-/-) mice was significantly reduced compared with WT mice (44% and 6%, p<0.01). Next, to evaluate the initial changes, aortic tissues at 24hours after BAPN/AngII infusion were examined. Neutrophil accumulation into thoracic aortic adventitia in CD44(-/-) mice was significantly decreased compared with that in WT mice (5.7 +/- 0.3% and 1.6 +/- 0.4%, p<0.01). In addition, BAPN/AngII induced interleukin-6, interleukin-1 beta, matrix metalloproteinase-2 and matrix metalloproteinase-9 in WT mice, all of which were significantly reduced in CD44(-/-) mice (all p<0.01). In vitro transmigration of neutrophils from CD44(-/-) mice through an endothelial monolayer was significantly decreased by 18% compared with WT mice (p<0.01). Our findings indicate that CD44 has a critical role in TAD development in association with neutrophil infiltration into adventitia. en-copyright= kn-copyright= en-aut-name=HatipogluOmer F. en-aut-sei=Hatipoglu en-aut-mei=Omer F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoMegumi en-aut-sei=Kondo en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= en-keyword=Aneurysm kn-keyword=Aneurysm en-keyword=Aortic diseases kn-keyword=Aortic diseases END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=5 article-no= start-page=1451 end-page=1460 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20055 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ADAMTS-9 is synergistically induced by interleukin-1 and tumor necrosis factor in OUMS-27 chondrosarcoma cells and in human chondrocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Objective
To compare induction of the aggrecanases (ADAMTS-1, ADAMTS-4, ADAMTS-5, ADAMTS-8, ADAMTS-9, and ADAMTS-15) by interleukin-1 (IL-1) and tumor necrosis factor (TNF) in chondrocyte-like OUMS-27 cells and human chondrocytes, and to determine the mechanism of induction of the most responsive aggrecanase gene.

Methods
OUMS-27 cells were stimulated for different periods of time and with various concentrations of IL-1 and/or TNF. Human chondrocytes obtained from osteoarthritic joints and human skin fibroblasts were also stimulated with IL-1 and/or TNF. Total RNA was extracted, reverse transcribed, and analyzed by quantitative real-time polymerase chain reaction and Northern blotting. ADAMTS-9 protein was examined by Western blotting, and the role of the MAPK signaling pathway for ADAMTS9 induction in IL-1-stimulated OUMS-27 cells was investigated.

Results IL-1 increased messenger RNA (mRNA) levels of ADAMTS4, ADAMTS5, and ADAMTS9 but not ADAMTS1 and ADAMTS8. The fold increase for ADAMTS9 mRNA was greater than that for mRNA of the other aggrecanase genes. The increase of ADAMTS9 mRNA by IL-1 stimulation was greater in chondrocytes than in fibroblasts. The combination of IL-1 and TNF had a synergistic effect, resulting in a considerable elevation in the level of ADAMTS9 mRNA. ADAMTS-9 protein was also induced in IL-1-stimulated OUMS-27 cells. The MAPK inhibitors SB203580 and PD98059 decreased ADAMTS9 up-regulation in OUMS-27 cells.

Conclusion
ADAMTS9 is an IL-1- and TNF-inducible gene that appears to be more responsive to these proinflammatory cytokines than are other aggrecanase genes. Furthermore, these cytokines had a synergistic effect on ADAMTS9. Together with the known ability of ADAMTS-9 to proteolytically degrade aggrecan and its potential to cleave other cartilage molecules, the data suggest that ADAMTS-9 may have a pathologic role in arthritis.

en-copyright= kn-copyright= en-aut-name=DemircanKadir en-aut-sei=Demircan en-aut-mei=Kadir kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishidaKeiichiro en-aut-sei=Nishida en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HatipogluOmer F. en-aut-sei=Hatipoglu en-aut-mei=Omer F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ApteSuneel S. en-aut-sei=Apte en-aut-mei=Suneel S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NinomiyaYoshifumi en-aut-sei=Ninomiya en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Okayama University Graduate School of Medicine and Dentistry affil-num=2 en-affil= kn-affil=Okayama University Graduate School of Medicine and Dentistry affil-num=3 en-affil= kn-affil=Okayama University Graduate School of Medicine and Dentistry affil-num=4 en-affil= kn-affil=Okayama University Graduate School of Medicine and Dentistry affil-num=5 en-affil= kn-affil=Okayama University Graduate School of Medicine and Dentistry affil-num=6 en-affil= kn-affil=Okayama University Graduate School of Medicine and Dentistry affil-num=7 en-affil= kn-affil=Lerner Research Institute, Cleveland Clinic Foundation affil-num=8 en-affil= kn-affil=Okayama University Graduate School of Medicine and Dentistry en-keyword=ADAMTS kn-keyword=ADAMTS en-keyword=aggrecanase kn-keyword=aggrecanase en-keyword=arthritis kn-keyword=arthritis en-keyword=chondrocyte kn-keyword=chondrocyte en-keyword=metalloproteinases kn-keyword=metalloproteinases en-keyword=IL-1 kn-keyword=IL-1 END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=2 article-no= start-page=79 end-page=85 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The 3'-untranslated region of ADAMTS1 regulates its mRNA stability en-subtitle= kn-subtitle= en-abstract= kn-abstract=

ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motifs 1) is an inflammatory-induced gene. We have previously reported that ADAMTS1 was strongly but transiently expressed in the infarcted heart. In this study, we investigated whether a 3'-untranslated region (UTR) affects the mRNA stability of this gene. When stimulated with tissue necrosis factor (TNF)-alpha, the expression level of ADAMTS1 mRNA rapidly increased, but the induction of ADAMTS1 mRNA peaked at 6h after stimulation, after which the expression levels of ADAMTS1 mRNA decreased. The 3'-UTR ADAMTS1 mRNA contains multiple adenine and uridine-rich elements, suggesting that the 3'-UTR may regulate gene stability. The addition of actinomycin D, an RNA synthesis inhibitor, demonstrated the decay of induced ADAMTS1 mRNA by TNF-alpha. Furthermore, a region containing multiple AUUUA motifs within the ADAMTS1 3'-UTR destabilized transfected Enhanced Green Fluorescence Protein (EGFP) mRNA expression. These results demonstrated that the ADAMTS1 3'-UTR may regulate the expression of ADAMTS1 mRNA.

en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CilekMehmet Zeynel en-aut-sei=Cilek en-aut-mei=Mehmet Zeynel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DemircanKadir en-aut-sei=Demircan en-aut-mei=Kadir kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShinohataRyoko en-aut-sei=Shinohata en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KusachiShozo en-aut-sei=Kusachi en-aut-mei=Shozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NinomiyaYoshifumi en-aut-sei=Ninomiya en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=3 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=5 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=6 en-affil= kn-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University affil-num=7 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=8 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University affil-num=10 en-affil= kn-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences en-keyword=ADAMTS1 kn-keyword=ADAMTS1 en-keyword=gene regulation kn-keyword=gene regulation en-keyword=metalloproteinase kn-keyword=metalloproteinase END start-ver=1.4 cd-journal=joma no-vol=117 cd-vols= no-issue=1 article-no= start-page=17 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050520 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=グリア境界膜に局在する新規遺伝子「リミトリン」の発見 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=米澤朋子 kn-aut-sei=米澤 kn-aut-mei=朋子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院医歯学総合研究科分子医化学 en-keyword=血液脳関門 kn-keyword=血液脳関門 en-keyword=アストロサイト kn-keyword=アストロサイト en-keyword=基底膜 kn-keyword=基底膜 en-keyword=グリア境界 kn-keyword=グリア境界 en-keyword=イムノグロブリンスーパーファミリー kn-keyword=イムノグロブリンスーパーファミリー END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=20031231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=イムノグロブリンスーパーファミリーに属するリミトリンはアストロサイト終足が形成するグリア境界膜に局在する kn-title=Limitrin, a Novel Immunoglobulin Superpart name="family" Protein Localized to Glia Limitans Formed by Astrocyte Endfeet en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name=米澤朋子 kn-aut-sei=米澤 kn-aut-mei=朋子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END