このエントリーをはてなブックマークに追加
ID 19659
Eprint ID
19659
フルテキストURL
著者
Tsubota Hajime Okayama University
抄録
This paper extends EDA-RL, Estimation of Distribution Algorithms for Reinforcement Learning Problems, to continuous domain. The extended EDA-RL is used to constitiute FPS game players. In order to cope with continuous input-output relations, Gaussian Network is employed as in EBNA. Simulation results on Unreal Tournament 2004, one of major FPS games, confirm the effectiveness of the proposed method.
発行日
2009-11-12
出版物タイトル
Proceedings : Fifth International Workshop on Computational Intelligence & Applications
2009巻
1号
出版者
IEEE SMC Hiroshima Chapter
開始ページ
143
終了ページ
146
ISSN
1883-3977
NCID
BB00577064
資料タイプ
会議発表論文
言語
English
著作権者
IEEE SMC Hiroshima Chapter
イベント
5th International Workshop on Computational Intelligence & Applications IEEE SMC Hiroshima Chapter : IWCIA 2009
イベント地
東広島市
イベント地の別言語
Higashi-Hiroshima City
論文のバージョン
publisher
査読
有り
Eprints Journal Name
IWCIA